

Wiegand to RS232 Converter W2RS232 **User's Guide**

CE _{V1.4} 2009

Copyright © 2008 ETConcept Systems Engineering. All rights reserved including the right of reproduction in whole or in part in any form.

W2RS232 V1.4

This page intentionally left blank

Table of Contents

List of Accessories Included1
List of Required Accessories (not included) 1
Quick Installation 2
General Information5
Operating in Input Mode5
Wiegand interface Panel LED Signaling for Input-Mode7
Operating in Output Mode8
Wiegand interface Panel LED Signaling for Output-mode 9
Command Set 10
Wiegand Frame11
TAMPER Signal 14
GPIO ₀ Signal15
GPIO ₁ Signal16
Write to EEPROM 17
EEPROM Address Map 18
ETConcept iii

Soft Reset	18
EEPROM memory dump	19
CUSTOM COMMANDS	21
Product Specifications	22
Mechanical Specifications	24
CE Statement of Conformity	25
Important Information	26
Warranty	26
Warranty Service	27
Limitation of Warranty	27
Notice	30
Copyright	30
Worldwide Technical Support and Product Information	31

W2RS232 V1.4

List of Accessories Included

The packaged include the following items:

Wiegand to RS232 Converter (W2RS232)

User's Guide

2x- CTF female connectors

List of Required Accessories (not included)

To install the convert the following item are required:

ScrewDrivers

Power Supply

Null-Modem Cable

Quick Installation

To install the converter follow the steps below:

1. Verify the package contents (see the list of accessories included)

- 2. Connect the reader/controller Wiegand interface to the CTF terminal block
 - a. Follow the connection diagram below and use the screwdriver

b. Plug the CTF terminal block to the converter

3. Connect the converter to the power supply

- 4. Confirm that the correct mode has been detected (Input or Output):
 - a) If the converter isn't in the correct mode repeat

5. Then connect the serial cable to the controller.

General Information

Wiegand converters were developed for the security market to connect control access equipments like, for example, keypads and card readers with Wiegand interface, to other interfaced equipments like for example the serial port of a computer. This family of bidirectional Wiegand converters can convert data in binary format to Wiegand and vice-versa. The converter's setup is reduced to minimum for rapid installation.

The Converter has two working modes: input-mode and outputmode, explained in detail on the next subchapters.

Operating in Input Mode

The converter will operate in **Input-Mode** when connected to the **output interface** of a Wiegand compliant device e.g., a keypad or card-reader. In this mode, the converter will automatically convert a Wiegand 6-bit up to 96-bit input sequence to a formatted binary frame, see command set. It will

also detects changes on the Tamper input signal and reports to the controller. The converter sets the two general purpose I/O to output and will accept commands from the serial interface to control the GPIO₀ and GPIO₁. Figure 1 shows a conceptual diagram of the Wiegand converter in input mode and the data flow directions.

Figure 1 Conceptual diagram of the Wiegand converter dataflow on input mode

W2RS232 V1.4

Wiegand interface Panel LED Signaling for Input-Mode

Waiting Wiegand frame in Input-Mode

The converter is connected to the Wiegand interfaced equipment waiting for Wiegand frames from Wiegand Interface and commands from the RS232 interface.

Processing data in Input-Mode

The converter is processing the received Wiegand frame or command. After processing the converter returns to the **Waiting Wiegand frame** state.

Operating in Output Mode

The converter will operate in **Output-Mode** in two situations: when connected to the **input interface** of a Wiegand compliant device or if not connected to any device. In this mode, the converter will convert data received from the serial interface to Wiegand frames. It will also accept commands to control the Tamper signal. Changes in the general purpose inputs GPIO are converted to commands and sent out through the serial interface. Figure 2 shows a conceptual diagram of the wiegand converter in input mode and the data flow directions.

Figure 2 Conceptual diagram of the Wiegand converter dataflow on output mode

W2RS232 V1.4

Wiegand interface Panel LED Signaling for Output-mode

Waiting command in Output-Mode

The converter is waiting for commands from the RS232 interface and changes on the GPIOs or Tamper ports

Processing data in Output-Mode

The converter is processing the received command. After the processing and sending the wiegand frame the converter return to **Waiting command** state.

Command Set

The Wiegand converter is bidirectional and converts Wiegand frames on both directions. These frames follow the following basic structure:

Byte							Byte
N-1	N-2	N-3	N-4		2	1	0
Sync		ID	Cor	nmand [Data	-	CR

Byte N-1	Sync : Frame synchronization pattern.							
Byte N-2	Value = $55_h 55_h$							
Byte N-3	ID : Command Identification.							
	Values 00 _h – Reserved							
	01 _h – Wiegand frame Command							
	02 _h – Tamper Signal							
	03 _h – GPIO ₀ Signal							
	$04_{h} - GPIO_{1}$ Signal							
	05_{h} to 08_{h} – Reserved							
	09 _h – Write to EEPROM							
	0A _h – Force Reset							
	0B _h – Dump EEPROM data to terminal							
	OC_{h} to FF _h – Reserved							
Byte N-4 a	Command Data: Command Specific Data.							
Byte 2	(See commands)							
Byte 1	Reserved for future use							
Byte 0	CR: Carriage Return character							
	Value = 0D _h							

The transmission order on the serial channel is the mostsignificant byte first (N-1). The two most-significant bytes are the synchronization pattern field frame detection. The next byte is the identification field that stores the command identity, followed by the command's data. All commands finish with a carriage return character.

Wiegand Frame

When the converter is operating in Input-Mode and receives Wiegand frame, it issues a command on the serial interface. When operating in Output-Mode, the same command received on the serial interface will generate the corresponding Wiegand frame. The Wiegand frame command is presented in the following structure:

Byte																		I	Byte
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Syn	ic	ID	N _B		WDATA						Τ _Ρ	Τ _Β		CR					

Sync : Frame synchronization pattern. Value 55 _h 55 _h								
ID : Command Identification.								
Value 01 _h								
N _B : Wiegand frame size (including parity bits).								
Value from 6 to 96								
WDATA : Wiegand Data including parity bits.								
TP: Wiegand Pulse width (Not implemented on this version)								
TB: Wiegand Bit Period (Not implemented on this version)								
Reserved for future use								
CR: Caracter terminador (Carriage Return character)								
Valor = 0D _h								

The TP and TB fields represent the timing specifications of the Wiegand pulse width, t_P , and the bit period, t_B , as shown in Figure 3.

Figure 4 presents a conversion example of a 26bit Wiegand frame with a pulse width of 100µs and a bit period of 1ms. Both signals for DATA1 and DATA0 of the Wiegand interface are shown, with the corresponding converted frame.

Figure 4 - 26bit Wiegand Frame conversion example.

The converter needs a standby period t_w between Wiegand frames in order to process and transmit data, as shown in Figure 5. For example, a 26 bit Wiegand frame with a 1ms bit period must have minimum standby period of 26ms.

Figure 5 - Standby period between Wiegand frames

TAMPER Signal

When operating in Input-Mode, the converter will issue a TAMPER signal command every time the tamper signal changes state. If operating in Output-Mode, a TAMPER signal command will cause an update to this output signal, with the appropriate received value. The command has the following structure:

Ву	rte			Byte			
5	4	3	2	1	0		
Sync		ID	B _T	-	CR		

Byte N-1	Sync · Frame synchronization nattern
Byte N-2	value = $55_h 55_h$
Byte N-3	ID : Command Identification.
	Value 02 _h
Byte 2	B _T : Tamper Signal Value
	Value 00 _h Tamper Signal is 0
	FF _h Tamper Signal is 1
Byte 1	Reserved for future use
Byte 0	CR: Carriage Return character
	Value = 0D _h

GPIO₀ Signal

When operating in Input-Mode, the converter will update the GPIO₀ signal with a value received in a GPIO₀ signal command. If operating in Output-Mode, a GPIO₀ signal command is issued every time the GPIO0 signal changes state. The command has the following structure:

Ву	/te	Byte			
5	4	3	2	1	0
Sync		ID	B ₀	-	CR

Byte N-1	Sync : Frame synchronization pattern.
Byte N-2	Value = $55_h 55_h$
Byte N-3	ID : Command Identification.
	Value 03 _h
Byte 2	B ₀ : Tamper Signal Value
	Value 00 _h GPIO0 Signal is 0
	FF _h GPIO0 Signal is 1
Byte 1	Reserved for future use
Byte 0	CR: Carriage Return character
	Value = 0D _h

GPIO₁ Signal

When operating in Input-Mode, the converter will update the GPIO₁ signal with a value received in a GPIO₁ signal command. If operating in Output-Mode, a GPIO₁ signal command is issued every time the GPIO1 signal changes state. The command has the following structure:

Ву	te			Ву	rte				
5	4	3	2	1	0				
Sy	nc	ID) B ₁ -						
Byte N-1		Sync : Fran	ne synchroniz	ation patterr	า.				
Byte N-2			Value = 5	55 _h 55 _h					
Byte N-3		ID : Command Identification.							
			Value	04 _h					
Byte 2		B ₁ : Tamper Signal Value							
		Va	alue 00 _h GPI	O1 Signal is O					
	FF _h GPIO1 Signal is 1								
Byte 1		Reserved for future use							
Byte 0		rriage Return	riage Return character						

Write to EEPROM

This command writes a byte on the converter's EEPROM memory. The EEPROM memory addresses affected by the command are the configurations zone (the first 6 bytes). The new configurations only take effect on the next reset. The command has the following structure:

Ву	te				Ву	te		
6	5	4 3			1	0		
Sy	Sync		Address	Data	-	CR		
Byte N-	1	Sync	: Frame syr	nchronizatio	on pattern.			
Byte N-	2		V	/alue = 55 _h 5	55 _h			
Byte N-	3	I	D : Comma	nd Identific	ation.			
				Value 09	h			
Byte 3		Add	ress: Value	between 00	O_h and OF $_h$			
Byte 2		Data: Value between 00 _h and FF _h						
Byte 1		Reserved for future use						
Byte 0)	CR: Carriage Return character						
		Value = 0D _h						

EEPROM Address Map

Address	Туре	Value	Descriptions
00 _h	Byte	A5 _h	Working mode Auto (Default)
		OF _h	Input mode allways
		F0 h	Output mode allways
01 _h 02 _h		0D _h 00 _h	Defines the T_p time (50µs) (Default)
	Int	1A _h 00 _h	Defines the T_p time (100 μ s)
03 _h 04 _h	Int	9A _h 15 _h	Defines the T _b time (2 ms) (Default)
		CD _h 0A _h	Defines the T_b time (1 ms)
05 _h 06 _h	Int	FF _h C9 _h	Defines the Time-Out (5 ms) (Default)
07 _h	Byte	01 _h	Defines Binary Format (Default)
		02 _h	Defines ASCII Format
08 h	Byte	10 _h (Init value)	Next position for the Event Log
10_{h} -FF _h		-	Event Log (Stores all events i.e Reset, PowerUp and several other events).

Soft Reset

This command forces a reset. Two seconds after the receptions of this command the converters restarts. The command has the following structure:

Byte					Byte
5	4	3	2	1	0
Sync		ID	х	-	CR

Byte N-1	Sync : Frame synchronization pattern.
Byte N-2	Value = $55_h 55_h$
Byte N-3	ID : Command Identification.
	Value 0A _h
Byte 2	Don't care
Byte 1	Reserved for future use
Byte 0	CR: Carriage Return character
	Value = 0D _h

EEPROM memory dump

This command dumps the EEPROM contents to the serial interface. The command has the following structure:

Byte					Byte
5	4	3	2	1	0
Sync		ID	х	-	CR

Byte N-1	Sync : Frame synchronization pattern.
Byte N-2	Value = $55_h 55_h$
Byte N-3	ID : Command Identification.
	Value OB _h
Byte 2	Don't care
Byte 1	Reserved for future use
Byte 0	CR: Carriage Return character
	Value = 0D _h

ASCII Output Format

When the converter is set to ASCII output format all the data is converted to the equivalent, ASCII, Hexadecimal value until output. Except for sync pattern and the stop char $(0D_h)$.

The example on the Wiegand Frame section will be outputed as follows:

UU011A8003CB8000000000000000FF0000<CR>

ATTENTION: When the converter is set to ASCII output all the commands must be send in ASCII format as well.

To set the converter to ASCII output format the followig command must be send:

 55_h 55_h 09_h 07_h 02_h X $0D_h$

To teturn to the Binary output the following command must be send:

UU09070100<CR>

CUSTOM COMMANDS

Custom commands can be provided to adjust the converter to specific project needs. Contact ETConcept for further information on this subject.

Product Specifications

Electrical Characteristics			
Operating Voltage Range	Min. 7V DC Max. 16V DC		
Current Consumption	Typ. 30mA		
Environmental Characteristics			
Operating Environment	Indoor and Outdoor ¹⁾		
Operating Temperature Range ²⁾	0°C to 70°C		
Operating Humidity	0 - 95% (non-condensing)		
Storage	-40°C - 70°C and		
Slolage	0 - 95% (non-condensing)		
Wiegand Interface			
Wiegand Format Length	From 6 bits to 96 bits		
Idle Period	Min. 30ms		
Wiegand Pulse Width	Min. 50µs and Max. 200µs		
Wiegand Bit Period	1ms, 2ms		
General Purpose I/O	2		
Tamper Signal	1 Port to read/write the		
	TAMPER signal		

RS232 Interface			
Communication Distance	Up to 50m		
Communication Modes	Full-Duplex without flow		
2)	control		
Baud Rate ³⁾	9600		
Mechanical Characteristics			
Weight	75 g		
Dimensions	55 mm x 72 mm x 24 mm ⁴⁾		
Enclosure material	Anodized Aluminium		

Notes:

- 1) For Outdoor applications the converter must be protected against direct rain and direct sun exposure;
- 2) Other temperature ranges are available on demand;
- 3) Other Baud Rates are available on demand;
- 4) Dimensions include the terminal block CTF connectors.

W2RS232 V1.4

Mechanical Specifications

Note: All dimensions are in millimeters

24

CE Statement of Conformity

Manufacturer:

ETConcept, Systems Engineering

Address:

Bairro da Paradela Rua Jacinto Duarte, Lt.97 2660-270 Santo António dos Cavaleiros Portugal Wiegand to RS232 Converter

Type of Equipment:

Model:

Council directives applied:

Year mark applied:

2004/108/CE

W2RS232

2008

The product has been tested in the typical installation configuration and with peripherals complying with the above listed Directives. I, the Undersigned, hereby declare that the above mentioned equipment conforms to the requirements of the Directives specified above, when installed in accordance with the manufacturer specifications.

01/07/2008

Mr. João Casaleiro

óduct Manager

Important Information

This manual provides information on how to setup and interface the Wiegand to RS232 Converter (W2RS232). It has been written for experienced users to setup the system within the shortest time. Please take special care to all specifications and do not hesitate to contact ETConcept for any additional support.

Warranty

This ETConcept product is warranted against defects in material and workmanship for a period of two years from the date of shipment, as evidenced by receipts or other documentation. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part of) other ETConcept products. During the warranty period, ETConcept will, at its option, either repair or replace products which prove to be defective.

The warranty period begins on the date of delivery or on the date of installation if installed by ETConcept.

Warranty Service

For warranty service or repair, this product must be returned to a service facility designated by ETConcept.

For products returned to ETConcept for warranty service, the Buyer shall prepay shipping charges to ETConcept and ETConcept shall pay shipping charges to return the product to the Buyer. However, the Buyer shall pay all shipping charges, duties, and taxes for products returned to ETConcept from another country.

Limitation of Warranty

The foregoing warranty shall not apply do defects resulting from improper or inadequate maintenance bv the Buyer, **Buyer-supplied** products interfacing, unauthorized or modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

The installation of this product will not be covered by warranty if not executed by ETConcept. In addition, ETConcept does not

W2RS232 V1.4

warrant any damage that occurs as a result of the Buyer's products or any defects that result from Buyer-supplied products. It is the Buyer's responsibility to ensure that that the application meets all specifications. The warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner's failure to follow ETConcept installation , operation, or maintenance instructions; owner's modification of the product; owner's abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, o other events outside reasonable control.

TO THE EXTEND ALLOWED BY LOCAL LAW, ETConcept MAKES NO OTHER WARRANTY, EXPRESSED OR IMPLIED, WHETHER WRITTEN OR ORAL WITH RESPECT TO THIS PRODUCT AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE OR SATISFACTORY QUALITY. CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF ETConcept SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. ETConcept WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR 28 ETConcept

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. USE OF ETConcept DEVICES IN LIFE SUPPORT AND/OR SAFETY APPLICATIONS IS ENTIRELY AT THE BUYER'S RISK, AND THE BUYER AGREES DO DEFEND, INDEMNIFY AND HOLD HARMLESS ETCONCEPT FROM ANY AND ALL DAMAGES, CLAIMS, SUITS, OR EXPENSES RESULTING FROM SUCH USE.

This limitation of the liability of ETConcept will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against ETConcept must be brought within one year after the cause of action accrues. ETConcept shall not be liable for any delay in performance due to caused beyond its reasonable control.

For transactions in Australia and New Zealand: The warranty terms contained in this statement, except to the extent lawfully permitted, do not exclude, restrict, or modify and are in addition to the mandatory statutory rights applicable to the sale of this product.

NOTICE

ETConcept believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, ETConcept reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult ETConcept if errors are suspected. In no event shall ETConcept be liable for any damages arising out of or related to this document of the information contained in it.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of ETConcept Corporation. Additional copies of this manual can be obtained by contacting ETConcept or an authorized distributor.

Worldwide Technical Support and Product Information

ETConcept, Systems Engineering

Address

Bairro da Paradela, Rua Jacinto Duarte, Lt. 97 2660-270 Santo António dos Cavaleiros Portugal

Web Site Telephone: Skype Contact E-mail http://www.etconcept.com (+351) 965235764 TD_etconcept support@etconcept.com