

Wiegand Converters Series

User's Manual

Models: W2RS232, W2USB and W2RS485

Document Version: 2.0

2014

i

ii

Table of Contents

1	Intro 1.1	oductio Overvi	n ew	1 . 2
	1.2	Feature	es	. 2
	1.3	Packag	ge Checklist	. 2
	1.4		cations	
	1.5	Front p	anel layout	. 4
		1.5.1	LED Indicators	. 4
2	Pin	assignr	nents and Wiring	5
	2.1	W2RS	232 model	. 5
		2.1.1	Serial port pin assignments	
		2.1.2	Terminal block pin assignments	. 5
	2.2		B model	
		2.2.1		
	2.3	W2RS	485 model	
		2.3.1	Serial port pin assignments	
	2.4	Wiega	nd interface Terminal block pin assignments	
3	Con	nmunica	ation	7
3	Con 3.1			-
3			and detail	. 7
3		Comm	and detail \ldots	. 7 . 7
3		Comm 3.1.1	and detail $\dots \dots \dots$. 7 . 7 . 8
3		Comm 3.1.1 3.1.2	and detail \ldots	. 7 . 7 . 8 . 8
3		Comm 3.1.1 3.1.2 3.1.3	and detail \dots	. 7 . 7 . 8 . 8 . 9
3		Comm 3.1.1 3.1.2 3.1.3 3.1.4	and detail \dots	. 7 . 7 . 8 . 8 . 9 . 9
3		Comm 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	and detail \dots	. 7 . 7 . 8 . 8 . 9 . 9 . 9
3		Comm 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7	and detailWiegand frame (01_h) Tamper signal (02_h) GPIO_0 signal (03_h) GPIO_1 signal (04_h) Write EEPROM (09_h) Soft Reset $(0A_h)$ EEPROM dump $(0B_h)$. 7 . 7 . 8 . 8 . 9 . 9 . 9 . 9 . 10
3	3.1	Comm 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7	and detail \dots	. 7 . 7 . 8 . 8 . 9 . 9 . 9 . 9 . 10 . 10
3	3.1 3.2	Comm 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 EEPRO 3.2.1	and detail \dots Wiegand frame (01_h) \dots Tamper signal (02_h) \dots GPIO ₀ signal (03_h) \dots GPIO ₁ signal (04_h) \dots GPIO ₁ signal (04_h) \dots Soft Reset $(0A_h)$ \dots Soft Reset ((0A_h) \dots Soft Reset ((0A_h) \dots Soft Reset ((0A_h)	. 7 . 7 . 8 . 8 . 9 . 9 . 9 . 9 . 10 . 10
	3.1 3.2	Comm 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 EEPRO 3.2.1	and detailWiegand frame (01_h) Tamper signal (02_h) GPIO ₀ signal (03_h) GPIO1 signal (04_h) Write EEPROM (09_h) Soft Reset $(0A_h)$ EEPROM dump $(0B_h)$ OM memory map	. 7 . 7 . 8 . 8 . 9 . 9 . 9 . 9 . 9 . 10 . 10 . 11
	3.1 3.2 Mec	Comm 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.1.7 EEPRO 3.2.1 hanical W2RS	and detail	. 7 . 7 . 8 . 9 . 9 . 9 . 9 . 10 . 10 . 11 . 11 . 17

1. Introduction

The Wiegand converter series provides an easy solution to interconnect control access equipments. This manual describes the devices interfaces, installation and configuration. The Wiegand converter series include the following models:

- W2RS232: Wiegand to RS232 converter;
- W2RS485: Wiegand to RS485 converter without isolation;
- W2USB: Wiegand to USB converter.

This chapter covers the following topics:

- Overview
- Features
- Package Checklist
- Specifications
- LED Indicators

1.1 Overview

The Wiegand converter series provides an easy solution to connect control access equipments, such as, keypads and card readers, to PC based controllers through RS232, RS485 or USB ports. This family of bidirectional Wiegand converters can convert data in binary and ASCII format. The converter's setup is reduced to minimum for rapid installation.

All models support Wiegand frames up to 96 bits long. The Wiegand timings, frame format and output format can be configured and stored in the device EEPROM using the configuration application .

The W2USB model is bus-powered, not requiring an external power supply. Drivers are available which allow the device to work with Windows, Linux and Mac operating systems. The driver creates a Virtual COM port (VCP) allowing the USB device to appear as a COM port available to the PC.

The W2RS485 model can be used as a Wiegand extender allowing distance of up to 1200 meters.

1.2 Features

The Wiegand converter has the following features:

- Bidirectional conversion
- Automatic detection of the direction based on lines levels
- Wiegand frames up to 96 bits
- Two general purposed I/O
- Tamper signal forwarding
- Bus powered (W2USB model only)
- Support for RS-422 and 4-wire RS-485 (W2RS485 model only)
- · Configurable prefix and suffix chars to send before and after card data

1.3 Package Checklist

The following items are included in the package:

- Wiegand Converter
- Quick installation Guide
- Warranty Statement

1.4 Specifications

Wiegand Interface	
Frame Length	6 - 96 bits
Pulse Width	37 - 200 μs
Bit Period	1 - 2 ms
Idle Period	Min. 30 ms
General Purpose I/O	2
Tamper Signal	1
RS232 Serial Interface	
Ports	1
Signals	TxD, RxD, GND
Connector	Male DB9
RS485 Serial Interface	
Ports	1
Signals	TxD+, TxD-, RxD+, RxD-, GND
Connector	Terminal block
USB Interface	
Ports	1
Connector	USB type B
Serial Communication Parameters	
Speed	9600 Bauds
Data bits	8 bits
Stop bits	1 bits
Parity	None
Flow control	None
Power Requirements	
Supply voltage	7 - 22 V
Power Consumption	150 mA
Output Power (W2USB model only)	12 V and 100 mA
Mechanical	
	· // · · · · · ·
Dimensions	55 x 50 x 25 mm (L x W x H)
Material	Anodized aluminum
Weight	200 g
Environmental	
Operating Temperature	0°C to 55°C (32°F to 131°F)
Storage Temperature	-20°C to 70°C (-4°F to 185°F)
Operating Humidity	5% to 95% of RH
Warranty	
	2 Years

Table 1.1: Specifications

1.5 Front panel layout

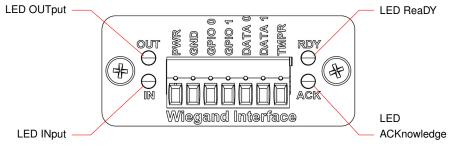


Figure 1.1: Front panel

1.5.1 LED Indicators

The LED position in the Wiegand interface panel are shown in figure 1.1 and the respective functions descriptions are in table 1.2.

Name	Color		Description
		On:	Convert wiegand to serial
INput	Green		
		Off:	_
		On:	Convert serial to wiegand
OUTput	Green		
		Off:	—
		On:	Ready to receive data
ReaDY	Yellow		
		Off:	Power off or processing received data
		On:	Data received
ACK	Red	Blink:	Error occurred (see table 1.3)
		Off:	

Table 1.2: LED description

Table	1.3:	ACK	LED	indicator	Error	codes
iabio	1.0.	/ 10/11		manoutor		00000

No. Blinks	Blink Rate		Error description
1	slow	-	No error
2	fast		Wrong Sync. Char
2	slow		Invalid command
3	fast		Receiver Timeout
4	fast		Unknown command
5	fast		Wrong termination char

2. Pin assignments and Wiring

2.1 W2RS232 model

2.1.1 Serial port pin assignments

DB9 (male)	Pin	RS232 signal
	1	-
1 5	2	ТХ
	3	RX
	4	-
	5	GND
	6	-
	7	-
69	8	-
	9	-

2.1.2 Terminal block pin assignments

Table 2.2:	Terminal	Block	Pin	assignment
------------	----------	-------	-----	------------

Terminal block	Pin	Signals
12	1	Power Supply Positive (+)
	2	Power Supply Negative (GND)

2.2 W2USB model

2.2.1 Serial port pin assignments

USB type B (Female)	Pin	Signals
	1	VBUS
	2	D-
	3	D+
	4	GND

2.3 W2RS485 model

2.3.1 Serial port pin assignments

Table 2.4: RS-422/RS-485	Interface Pin assignment
--------------------------	--------------------------

Terminal block	Pin	Signals	TIA/EIA-485-A
	1	Power Positive (+)	
1 7	2	GND	
	3	RxD-	В
	4	TxD-	Z
	5	TxD+	Υ
	6	RxD+	A
	7	BGND	Common

2.4 Wiegand interface Terminal block pin assignments

Terminal block	Pin	Signals	
	1	Power Supply Positive (+)	
1 7	2	Power Supply Negative (GND)	
	3	GPIO 0	
	4	GPIO 1	
	5	Wiegand Data 0	
Wiegand Interface	6	Wiegand Data 1	
	7	Tamper signal	

Table 2.5: Wiegand Interface Pin assignment

3. Communication

In this chapter the complete command set of the converter is described. The command format is as follows:

	ync ₂ CMD ID	CMD Data	Х	CR
--	-------------------------	----------	---	----

where the first two chars, on the left, are the synchronization chars, followed by the command ID (CMD ID) byte and by the data bytes of the command. The X represents a reserved char, for future use, which can be set to any value, and the CR represents the terminator char, the carriage return $\langle CR \rangle$ (with value 0Dh in Hex).

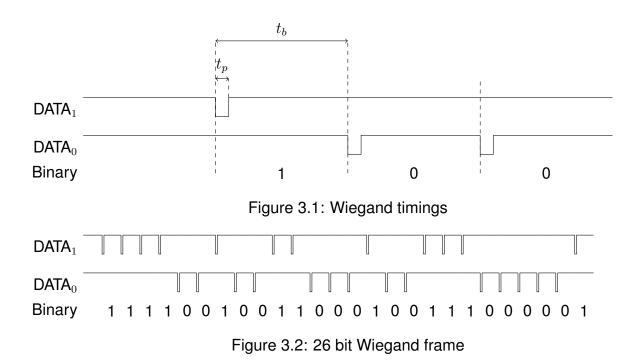
The transmission order is the synchronization char, $Sync_1$, first and the carriage return $\langle CR \rangle$ last.

The synchronization chars are equal and defined with the value 55 in Hex format, i.e. $Sync_1=Sync_2=55_h$, which corresponds to the ASCII char 'U'.

CM	D ID	Description				
Dec	Hex	Input mode	Output mode			
01	01 _h	Received Wiegand frame	Generate Wiegand frame			
02	02 _h	Tamper Signal Status	Set/Clear Tamper			
03	03 _h	Set/Clear GPIO ₀ Signal	GPIO ₀ Signal status			
04	04 _h	Set/Clear GPIO ₁ Signal	GPIO ₁ Signal status			
		•				
09	09 _h	Write to EEPROM				
10	$0A_h$	Soft Reset				
11	$0B_h$	EEPRO	M Dump			

Table 3.1:	Command s	et summary
------------	-----------	------------

3.1 Command detail


3.1.1 Wiegand frame (01_h)

The Wiegand-frame command is as follows

'U' 'U' 01 _h Nb Wiegand raw data	t_p	t_b	Х	CR	
---	-------	-------	---	----	--

where Nb is a byte representing the number of bits of the wiegand-frame followed by the wiegand raw data within an array of twelve bytes. The t_p and t_b bytes represents, respectively, the wiegand-frame pulse width and bit period as shown in figure 3.1 on the following page. However, these bytes are not used by the converter. To set the wiegand timmings please refer to EEPROM settings. Note that the valid range of Nb is between 6 and 96, any value outside this range can yield an unpredictable result.

In output mode, see table 1.2 on page 4, the converter processes the command, copies the data to the Wiegand output buffer and sends, through the wiegand port, the specified frame.

For example, to send a standard 26 bits wiegand-frame with facility code $E4_h$ and badge id $C4E0_h$, send the command above which generates the 26 bit Wiegand-frame shown in Figure 3.2. Notice that the parity bits should be added to the raw data. For more examples see chapter **??** on page ??.

$$55_h \quad 55_h \quad 01_h \quad 0A_h \quad F2_h \quad 62_h \quad 70_h \quad 40_h \quad 00_h \quad$$

It is important to notice that, the converter needs a standby period, t_W , between Wiegandframes in order to process and transmit data, as shown in figure **??** on page **??**. Check the specifications of your reader, or controller, for this requirement.

3.1.2 Tamper signal (02_h)

The converter in input mode sets the tamper port, see table 2.5 on page 6, to input. Any state change of the port will trigger a serial transmission of a tamper signal command. In this mode, sending a tamper command to the converter has no effect on the port state and the command is discarded.

For the output working mode the converter sets the tamper port to output. The tamper command sets the port level.

The command format is as follows:

```
55_h 55_h 02_h VALUE 00_h 0D_h
```

where VALUE is a byte representing the tamper port state. Value 00_h represents a low-level on the tamper port and FF_h a high-level.

3.1.3 GPIO⁰ signal (03_{*h*})

The converter working in output mode sets the $GPIO_0$ port, see table 2.5 on page 6, to input. Any state change of the port will trigger a serial transmission of a $GPIO_0$ signal

command. In this mode, sending a GPIO₀ command to the converter has no effect on the port state and the command is discarded.

For the input working mode the converter sets the $GPIO_0$ port to output. The $GPIO_0$ command sets the port level.

The command format is as follows:

 55_h 55_h 03_h VALUE 00_h $0D_h$

where VALUE is a byte representing the $GPIO_0$ port state. Value OO_h represents a low-level on the $GPIO_0$ port and FF_h a high-level.

3.1.4 GPIO₁ signal (04 $_h$)

The converter working in output mode sets the $GPIO_1$ port, see table 2.5 on page 6, to input. Any state change of the port will trigger a serial transmission of a $GPIO_1$ signal command. In this mode, sending a $GPIO_1$ command to the converter has no effect on the port state and the command is discarded.

For the input working mode the converter sets the $GPIO_1$ port to output. The $GPIO_1$ command sets the port level.

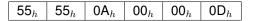
The command format is as follows:

 55_h 55_h 04_h VALUE 00_h $0D_h$

where VALUE is a byte representing the GPIO₁ port state. Value 00_h represents a low-level on the GPIO₁ port and FF_h a high-level.

3.1.5 Write EEPROM (09_h)

This command writes a byte to the device EEPROM memory. The command has the following format:


 55_h 55_h 09_h ADDRESS VALUE 00_h $0D_h$

where the bytes ADDRESS and VALUE represent, respectively, the destination address and the byte to store. The destination address is limited to position 127 (see configuration EEP-ROM description). The higher addresses are reserved for logging the errors and warnings and, cannot be accessed by the write commando.

Note that any change to the configuration will only takes effect after reset.

3.1.6 Soft Reset (0A_h)

This command forces a reset. The device restarts two seconds after the receptions of this command. The command has the following format:

During reset the Led ACK stays on for two seconds.

3.1.7 EEPROM dump (0B_h**)**

This command dumps the EEPROM contents to the serial interface. The command has the following format:

 55_h 55_h $0B_h$ 00_h 00_h $0D_h$

3.2 EEPROM memory map

The device's EEPROM stores the configuration registers (the first 128 bytes) and the event logger (the last 128 bytes). This chapter starts with a detailed description of each configuration register. Followed by the description of the errors and events codes stored in the log.

Table 3.2 presents the device register map located in the EEPROM.

Add	ress	Register	Length	Default	Description
Dec	Hex	Name	Bytes	Value	
00	00	Working mode	1	$A5_h$	Working mode register
01	01	Pulse width (T _P)	2	$000 D_h$	Wiegand Pulse width
02	02		-	00000	megana i dice matri
03	03	Bit Period (T _B)	2	1CCC_h	Wiegand bit period
04	04		_		
05	05	Timeout (T _w)	2	$C9FF_h$	Wiegand frame timeout
06	06				C C
07	07	Output Format	1	01 _h	Serial output format
08	08	Log Index	1	01 _h	Next log index
09	08	Baudrate	1	04_{h}	Baudrate index
10	0A	Data bits	1	01 _h	Number of data bits idx.
11	0B	Stop bits	1	00_{h}	Number of stop bits idx.
12	0C	Parity	1	00_{h}	Parity type
13	0D				
		Output format 1	16	-	Output format 1 fields
28	1C				
29	1D				
		Output format 2	16	-	Output format 2 fields
44	2C				
45	2D				
		Output format 3	16	-	Output format 3 fields
60	3C				
61	3D				
		Output format 4	16	-	Output format 4 fields
76	4C				

Table 3.2: EEPROM register map summary

Add	ress	Register	Length	Default	Description
Dec	Hex	Name	Bytes	Value	
77	4D				
		Output format 5	16	-	Output format 5 fields
92	5C				
93	5D	Reference Level	1	10 _h	Wiegand ref. level
94	5E				
		Events log	128	-	Events log zone
100	64			-	

Table 3.2: EEPROM register map summary (continued)

The converter supports up to 5 different ASCII output formats and, on each format, 3 different fields can be configured. The configuration of these formats are stored in the output format registers, as shown in table 3.3.

Rel. A	Address	Register	Default	Description
Dec	Hex	Name	Value	
+ 00	00	Nbits	00 _h	Wiegand-frame number of bits
+ 01	01	Spos	-	Wiegand Field ₁ position
+ 02	02	Slen	-	Wiegand Field ₁ length
+ 03	03	Fpos	-	Wiegand Field ₂ position
+ 04	04	Flen	-	Wiegand Field ₂ length
+ 05	05	Bpos	-	Wiegand Field ₃ position
+ 06	06	Blen	-	Wiegand Field ₃ length
+ 07	07	PePos	-	Parity even bit position
+ 08	08	PeBegin	-	Parity even start bit
+ 09	09	PeEnd	-	Parity even stop bit
+ 10	0A	PoPos	-	Parity odd bit position
+ 11	0B	PoBegin	-	Parity odd start bit
+ 12	4C	PoEnd	-	Parity odd stop bit
+ 13	4D	Prefix	'<'	Prefix added to each field
+ 14	0E	Suffix	'>'	Suffix added to each field
+ 15	0F	Flags	FF_h	Output format flags

Table 3.3: Output format registers

3.2.1 Registers

Working mode register

The value of the register defines the device working mode. See the options in table 3.5 on page 13.

Table 3.4:	Working	mode	register
------------	---------	------	----------

Register Value	Description
$A5_h$	Converter in automatic detection
OF_h	Converter configured to input mode
$F0_h$	Converter configured to output mode

Pulse width

The value of the register defines the wiegand pulse width, t_p . Use equation (3.1) to determine t_p in μ s.

$$t_p \approx 2.8836 \times (\mathsf{T}_\mathsf{P}) \tag{3.1}$$

Bit Period

The value of the register defines the wiegand period. Use equation (3.2) to determine t_b in μ s.

$$t_b \approx 0,2713 \times (\mathsf{T}_\mathsf{B}) \tag{3.2}$$

Timeout

The value of the register, T_W , defines the timeout period, t_w , to assume the end of wiegand frame. The timeout only affects the receiving of wiegand frames (INPUT mode). Use equation (3.3) to determine the timeout in μ s.

$$t_w \approx 0.2713 \times (65535 - \mathsf{T}_W)$$
 (3.3)

The device measures the timeout period using a 16 bit internal timer that increments on every clock cycle of the processor. The timeout timer starts after the first wiegand pulse and on every wiegand pulse its value is reset to T_W . At the end of the wiegand frame no further pulses are received and the timer reaches the value 65535 which triggers the wiegand frame processing, see the timing diagram in Figure 3.3.

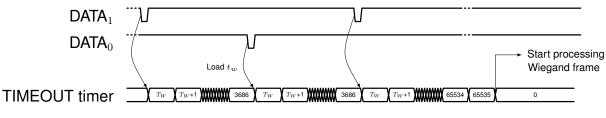


Figure 3.3: Timeout timings

Output Format

The value of the register is an index of table 3.5 on the next page which defines the output format.

Table 3.5:	Working	mode	register
------------	---------	------	----------

Register Value	Description
01 _h	Binary output
02 _h	ASCII output

Log Index

The value of the register represent the address were it will be logged the next event or error. The register value is automatically updated after a log and maintained within the range of 128 to 255.

Baudrate

The value of the register is an index of table 3.6 which defines the communication baudrate.

Register Value	Baudrate
00_{h}	300
01 _h	1200
02 _h	2400
03 _h	4800
04_h	9600 (default)
05 _h	19200
06 _h	38400
07 _h	57600
08 _h	115200
09 _h	Reserved

Table	3.6:	Baudrate
-------	------	----------

Data bits

The value of the register is an index of table 3.7 which defines the communication data bits.

Register Value	Data bits
00 _h	7 bits
01 _h	8 bits (default)

Stop bits

The value of the register is an index of table 3.8 which defines the communication stop bits.

Register Value	Stop bits
00_h	1 stop bit (default)
01 _h	2 stop bits

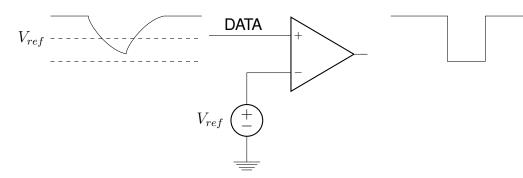


Figure 3.4: Wiegand line detector

Parity

The value of the register is an index of table 3.9 which defines one of three parity types for the communication.

Register Value	Parity type
00_h	None (default)
01 _h	Even
02 _h	Odd

Reference Level

The wiegand DATA lines levels are detected by two independent comparators with a common reference voltage, as shown in figure 3.4. By default, this value is 16 which corresponds to a 2.5V reference (half the supply voltage 5V). However, for long lines, many times, the wiegand pulse does not reach the low level, hence, the pulses are not detected. To compensate the line loss one can adjust the reference level up by changing the reference level register. The voltage reference level is given by

$$V_{ref} = 5 \times \frac{RegisterValue[4:0]}{2^5},$$
(3.4)

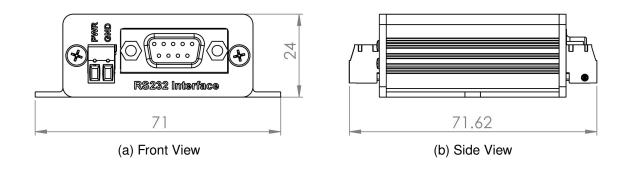
where the less 5 significant bits of the register value are used.

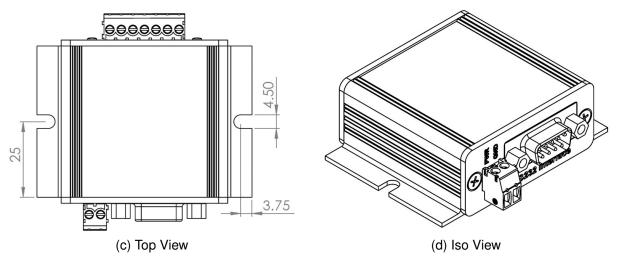
Warning : Changing the reference level may lead to false detections due to noise. So when possible adjust the pulse width instead and leave the reference value unchanged!

Event log codes

The event log stores the last events, e.g. a device reset, on the high half-side of the device EEPROM. The address of the next log is defined by the *Log index* register, see section 3.2.1 on page 13. The log codes are shown in table 3.10 on the following page.

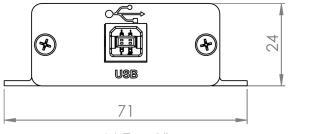
Table 3.10: Event codes

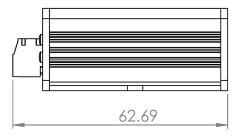

Code	Description
00_{h}	No error ^a
FF_h	Software reset
FE_h	Hardware reset
FD_h	Brown-out Reset (Power supply < 2.4 V)
FC_h	Power-up ^a
FB_h	EEPROM corruption
FA_h	Memory Error
$F9_h$	Communication Error
$F8_h$	Invalid Command
$F7_h$	Illegal Command


^a allways followed by a reserved code

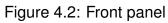
4. Mechanical Specifications

All dimensions are in millimeters.

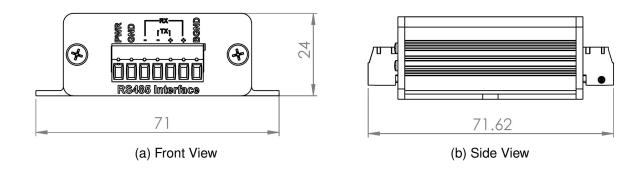

4.1 W2RS232 model

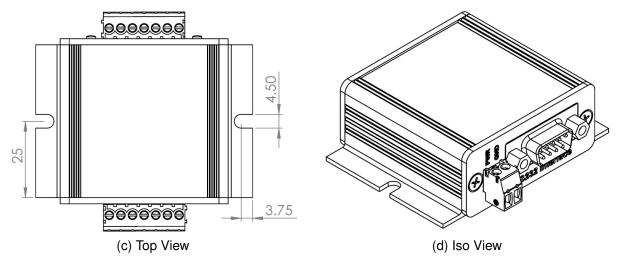


4.2 W2USB model



(a) Front View





4.3 W2RS485 model

